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Abstract

This effort advanced the art of applying Grenander's pattern theory to automatic
target recognition (ATR) problems. We extended jump-diffusion ATR algorithms to
accommodate unknown infrared camera calibration effects and include more stable dif-
fusion procedures for pose refinement, and developed flexible shape models to accom-
modate clutter. We also developed performance bounds on estimation and recognition
performance for low-frequency radar data, single-image laser radar data, and "point
cloud" 3-D data assembled from multiple sources. Further work explored data fusion
using the "probability hypothesis density" approach.
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1 Objectives

This research project seeks novel applications of Grenander's pattern theory to prob-

lems of Automatic Target Recognition (ATR) in clutter. Model-based algorithms can

be powerful, but they can also be fragile if there is a substantial mismatch between

the reality and the model. Previous applications of pattern theory to ATR for infrared

and laser radar data have considered scenes consisting of targets from a known library

against a simple background. While this may be sufficient for relatively simple sce-

narios, such as tanks against a desert background, such simple "target/background"

parameterizations will have difficulty with more cluttered scenes. One fundamental

aspect of studying such systems is development of fundamental lower bounds on their

performance; such bounds may be used to optimize system parameters.

1.1 Philosophy

Our pattern-theoretic approach to ATR might be thought of as "recognition through

simulation" or "recognition through synthesis." In traditional ATR development, sim-

ulation plays an important role in the creating numerous data sets to test traditional

algorithms. In contrast, in our Grenander-inspired approach, simulation plays a role

inside the ATR algorithm itself.

In the field, an ATR system collects some data about an underlying scene of interest.

Ideally, we would have a Magic Sensor that says "there is a T62 at this latitude and

longitude, and an M60 at this other latitude and longitude." Our real sensors must

collect data subject the vagaries of nature and the sensor. In the case of laser radar, we

see at targets through the effects of obscuration and perspective projection. The sensor
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adds additional complications such as sampling effects, range noise, and anomalous
("garbage") pixels.

Figure 1: High-level view of our approach to designing ATR algorithms.

As illustrated in Figure 1, our approach to ATR involves simulating a scene that

would be generated by a hypothesized set of targets (including types, positions, orien-

tations, etc.), but not including noise. The effect of noise on the real data is encapsu-

lated in the "sensor likelihood" function, which compares our hypothetical computer-

generated image with the real data. If the likelihood is high, then the computer-

generated image and the real data are a close match, and our hypothesis was a good

one. However, our initial hypothesis is probably not that good, and our hypothesized

scene does not match the real data well; hence, we invoke a feedback loop, by which

the hypothesis is refined, and new hypothesized target sets are formed. The process

repeats, with the algorithm continually trying new target types, refining their positions

and orientations, etc., trying to get its simulated scene to most closely match the real

data.
Note that this process just involves simulating scenes and comparing them to the

real data with a sensor likelihood. There are no separate stages of denoising, edge

detection, feature extraction, etc. as often found in traditional ATR algorithms.

Although Figure 1 uses laser radar as an example, this philosophy may be used

on any sort of sensor, as long as a model for generating data with that sensor is

available. Having accurate sensor models, particularly for tasks like scene generation,

is important. In this approach, it is vital that we get to know our sensors.

1.2 Context of Effort

Work on this Pattern Theoretic ATR (PTATR) effort under AFOSR funding began in

mid-August, 2003. Although the initial effort primarily focused on ATR with infrared

data, it split into four related threads. The first two, ATR with infrared data (Section

2.1) and ATR with 3-D data (Section 2.2), constitute the bulk of the PTATR effort.

The second two tasks, the creation of performance bounds (Section 2.3) and data fusion

using finite-set statistics (Section 2.4), constitute synergistic adjuncts with other efforts.

Additional effort was expended towards developing sensor simulation software for use
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by the general ATR community, as described in Section 5.2. A subcontract from Jacobs
Sverdrup allowed Jason Dixon to spend some time working directly with personnel at

Wright-Patterson Air Force Base during the development of the LADAR simulator.
To best leverage the government's support and give AFOSR maximal impact for

its investment, work in this area has continued past the September 2006 end date

via discretionary funds provided to Aaron Lanterman through the Demetrius T. Paris
Junior Professorship.

2 Accomplishments

2.1 ATR with Infrared Data

As described in Appendix F, we are exploring different ways of extending previous

models by supplementing the 3-D CAD models of specific targets with flexible models

that can accommodate clutter objects not found in the algorithm's target library. Some
emphasis has been placed on moving away from strict diffusion implementations, since

diffusions involve difficult choices involving step sizes (both in terms of discretizing the

diffusion itself and in terms of numerical computations of derivatives); as described in

Section 2.1.1, we have explored achieving the effect of diffusions via "little jumps" that

avoid some of these complications.
In jump-diffusion algorithms for Bayesian inference, the jumps are typically respon-

sible for handling large changes in the hypothesized configuration, such as the addition

or deletion of a target or a change of target type, while the diffusions refine continuous

parameters, such as position and orientation. Various kinds of jumps are illustrated in

Figure 2.

Figure 2: Illustration of jump moves to add hypothesized targets, remove hypothesized

targets, and change hypothesized target types.

Our previous work exploring jump-diffusion algorithms for automatic target recog-

nition from infrared scenes assumed that the radiant characteristics of the objects were
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Figure 3: Flowchart of legacy jump-diffusion algorithm for pattern-theoretic ATR with in-
frared data.

known. The radiant characteristics of real objects varies widely depending on envi-
ronmental conditions and operational history; for instance, whether the engine has
been running and how hard, whether it is a cloudy or sunny day, whether the gun has
just been fired, etc. To accommodate this thermal variability within the Grenander
framework, we have incorporated eigentank models into the jump-diffusion code. The
eigentanks are defined over the full 3-D surface of the target, although only a portion
of that surface is projected onto the detector. The eigentank models are derived from
a principal component analysis of thermal profiles simulated under a wide range of
conditions, and characterize how different parts of a target "heat up" or "cool down"
together. Figure 3 gives a flowchart of our jump-diffusion algorithm for ATR with
infrared data, as it roughly stood before the beginning of our PTATR effort. Figure
4 shows where the new advances developed under this effort, including modifications
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described in Appendix B and Sections 2.1.1 and 2.1.2, fit into the overall algorithm.

No
Yees

Hold

S.. ............. N

Figure 4: Flowchart illustrating enhancements to the pattern theoretic ATR with infrared

data developed under the current effort.
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2.1.1 Improved Diffusion Approaches

Background on previous Langevin-based diffusion algorithms: The pattern-
theoretic ATR algorithm employed in our studies uses a type of jump-diffusion process1

to iteratively estimate target characteristics and pose present in a given image. The

pose parameters are used to render hypothesized scenes through a set of OpenGL
routines, which are compared to the original data image using a likelihood function

based on forward-looking infrared (FLIR) or laser radar (LADAR) sensor statistics.

The jumps determine the size of the parameter space, i.e., the number of targets, while

diffusions update pose parameter estimates.
During the intervals between jumps, the diffusion process takes over and adjusts

the continuous configuration pose parameters ([x, y, 0] - two ground-based coordinate

positions and an orientation angle) by small amounts to better align the hypothesized
targets with the corresponding detected targets in the data. Diffusions are accom-

plished using the Langevin stochastic differential equation (SDE):

dCN(r) = VcNH[CN(r)ldldT + '2idWN, (1)

where WN is a Wiener process and H[CN(r)Id] is the logposterior for data d asso-

ciated with the configuration parameter vector CN, which contains the configuration

parameters for N targets with fixed classes. x and y are ground-based position coordi-

nates, and 0 is the target orientation angle. The time index r refers to a unit of time

within the diffusion interval. Once (1) is discretized, r can simply be thought of as a

discrete time index such that a finite number of diffusions will occur between jumps;

that number is an exponential random variable.
The derivative needed in solving the Langevin SDE (1) may be computed with a

finite difference approximation:

OH(cld) H(...,c + +,....Id) - H(...,cp - ,...Id)
26 (2)

where cp is a single parameter of the configuration c, 6 is some small deviation of the

parameter cp, and the ellipses indicate the remaining parameters are held fixed.

To summarize this process, the jump-diffusion algorithm starts by estimating an

approximate location for a target. If we create a scene by rendering a target at this

estimated location, which we will call the hypothesis, we will see that the hypothesized

target and corresponding target in the data partially overlap. To refine the initial guess,

the diffusion process incrementally adjusts the pose parameters, using the information

in the image data. When viewing the hypothesis rendered on top of the data, the

overlap between the two improves as the estimated pose parameters converge to their

true values. See Figures 5 and 6 for examples of the diffusion process.

Problems with previous diffusion algorithms: When simulating the Langevin

SDE, two issues arise: the choice of stepsizes for the derivative computation and the

1U. Grenander and M.I. Miller, "Representations of Knowledge in Complex Systems," Journal of the

Royal Statistical Society, Series B, Vol. 56, No. 4, pp. 549-603, 1994. Anyone first approaching Grenander's
theory should begin with this paper.
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(a) (b)

Figure 5: Images (a) and (b) contain a sample, synthetic, noisy, LADAR image. A T62 tank
sits at the origin of a ground plane. If we assume that our ATR algorithm initially detects a

target in the general vicinity of the T62, we may find that our hypothesized T62, denoted by
the wire frame outline, does not overlap perfectly with the T62 in the data. This is shown in

(a). After a few iterations of the diffusion process, the pose parameters of the hypothesized
T62 should match those of the data T62, and the hypothesized T62 should perfectly overlap
with the data image, as shown in (b).

(a) (b) (c) (d)

Figure 6: Images (a), (b), and (c) show a hypothesized target rendered over sample FUR

image data. In each of these images, the estimated pose parameters do not match the true

values for the corresponding target within the data image, but there is some overlap. After

a sufficient number of iterations of the diffusion process, the estimated pose parameters will

adjust until there is a closer match with the data, as shown in image (d).
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choice of stepsizes for the discretized diffusions themselves. In the jump-diffusion exper-
iments, both of these were determined empirically through a trial-and-error approach

that yielded the best adjustments to the configuration parameters. Ideally, these should

be automatically determined, but this is problematic because they depend on the types

of targets in the scene, the scene's viewing parameters, and the data likelihood function.

Also, Langevin-style diffusions are more natural when there is an analytic solution

to the likelihood derivative. As defined in the ATR problem, this derivative must be

approximated with the finite difference equation shown in (2). The logposterior H is

effectively a function of an image, and we are taking the derivative of this function

with respect parameters used to generate the image. The nature of this approximation

demonstrates another reason why determining ideal stepsizes for dr and dWN from (1)

is not intuitive.
Lastly, diffusions of this form may lead to crude approximations to the pose of

detected targets. In some cases, the Langevin diffusion may not converge, but instead

oscillate among values close to the true target pose. These characteristics are common

to Langevin-style diffusions. 2

The following discussion will examine our new diffusion algorithm, which redefines

the pose parameter refinement problem in way that is more natural to implement and

less reliant on arbitrary stepsizes.

New pixel-based diffusion algorithm: In our new diffusion algorithm, we note

that the Langevin SDE is not necessary to determine appropriate changes in the coor-

dinate pose parameters (x and y ground plane positions) because those parameters are

naturally discretized by the inter-pixel spacing within the image of interest, represented

by some real-world unit of measure. For example, if the spacing between neighboring

pixels happens to be on the order of centimeters, adjustments to the pose parameters

on the order of millimeters will usually not result in a visible change to the hypoth-

esized image. The possibility of subpixel refinement exists, but this requires further

study.
The process begins by choosing a pixel radius, the desired number of adjacent pixels

to consider when determining an updated set of pose parameters for the hypothesized

target. A larger pixel radius implies that a larger search space will be considered,

increasing the computation time per iteration but decreasing the number of iterations

necessary to reach the optimal pose values. Once a pixel radius is chosen, the algo-

rithm proceeds by adjusting the pose parameters for the hypothesized target, selecting

values that would result in the image of the hypothesized target moving by a single

pixel, or multiple pixels, across the projected surface of the image (see Figure 7). The

mapping from pixel coordinates to position coordinates is a function that is built into

the OpenGL rendering system we use pattern-theoretic ATR.

In addition to varying the coordinate parameters, we also must consider the orien-

tation parameter 0. This parameter represents the ground-based rotation angle of the

target of interest. Rotations do not fit our pixel-based adjustment model as well as

changes to the position coordinates, so we are left with choosing a method that will

appropriately sample small deviations of 9. This effectively rotates the hypothesized

2p.j. Green, "A Primer on Markov chain Monte Carlo," Complex Stochastic Systems, Eindhoven, pp. 1-

62, 2001.
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(a)

(-13.67, 13.67) (-6.83, 13.67) (0.00, 13.67) (6.83, 13.67) (13.67, 13.67)
(-13.67, 6.83) (-6.83, 6.83) (0.00, 6.83) (6.83, 6.83) (13.67, 6.83)
(-13.67, 0.00) (-6.83, 0.00) (0.00, 0.00) (6.83, 0.00) (13.67, 0.00)
(-13.67, -6.83) (-6.83, -6.83) (0.00, -6.83) (6.83, -6.83) (13.67, -6.83)

(-13.67, -13.67) (-6.83, -13.67) (0.00, -13.67) (6.83, -13.67) (13.67,-13.67)
(b)

Figure 7: In image (a), a tank is located at some ground-based position that we denote
(0.00, 0.00). The tank is imaged by a LADAR sensor positioned 100 m away, with a 300
field-of-view angle, pointing directly toward the tank. If a pixel radius of two were chosen
for the diffusion, the 24 pixels surrounding the origin pixel would be selected as candidates
for the first iteration. For the image as specified in (a), the 24 test pixels and origin pixel
will correspond to the grid of (x, y) pose parameters, in centimeters, found in (b). In this
case, the space between each pixel is approximately 6.83 cm.
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targets by small amounts in both directions. We have found that specifying a sweep

angle 0, and sweep angle stepsize do 8 is flexible enough to allow the algorithm to

converge to pose values matching those of the corresponding target in the data, under
many varying conditions.

Once the candidate coordinate positions have been chosen, the posterior proba-

bilities are computed for each candidate. The best candidate is considered to be the

choice that maximizes the logposterior around the chosen samples. The best candidate

is accepted with probability f1(ccrr, cnxt), calculated using the Metropolis-Hastings

approach: ( r(c..xt)r(cnetcu))
/3(Ccurr Cnext) = min 7Ccurr ) ' 1. (3)

Sr (ccurr)r(Ccurr, cnext) )

The term cnext is the proposed state of the configuration, while c 9ig is the current
.3state. The functions r(cnext, Ccurr) and r(ccurr, cnext) are the transition probabilities.

The function 7r(c) is the probability of being in state c, which in this case is derived

from the logposterior H. When selecting candidates during an iteration, candidate

position and orientation values can be adjusted by adding a noise term dWN, just as
was done in the Langevin SDE approach, to reduce the possibility of becoming trapped
in one of the posterior distribution's local maximums.

A summary of the diffusion algorithm is shown in Table 1.

Table 1: Pixel-based diffusion algorithm.

Initialization
Determine initial pose parameters cext -- 1x0, Yo, 00]

[X0, yo, o0]
Set pixel radius rp
Set sweep angle 0, and stepsize do,

Iteration
Repeat

(1) Assign Cmrr - Cext

(2) Find the set of pixels lZp = Pxy : 1iIP. - Pxo0Y 11 < rp

(3) Find the No = 0- angular sweep steps in the set Al4

(4) For all pose parameter coordinates in the space 7Zp x Are

(a) Compute the logposterior probability H

(5) Assign c•,t to the [x, y, 0] that maximizes H over the space 7Rp x JVP

(6) Accept c,-nt with probability f(Ccurr, cneat)

Until c.rr = Cmext

3See A.D. Lanterman, "Jump-diffusion algorithm for multiple target recognition using laser radar range

data," Optical Engineering, Vol. 40, No. 8, pp. 1724-1728, 2001, for details.
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2.1.2 Calibration

The original algorithms and techniques for pattern-theoretic ATR were evaluated on
synthetic image sets. These image sets were created either directly from known thermal
intensity values or indirectly by generating thermal intensity values probabilistically
from a set of known thermal intensity values. This was appropriate for testing the
effectiveness of the algorithm, but it does not reflect how the algorithm will work on real
thermal infrared imagery. Therefore, the calibration problem needs to be addressed.
Suppose that the relationship between the model and the image is affine and can be
summarized as

Ai,t = a),\t + b, (4)

where Ai,t is the intensity for target t at intensity region i in the image acquired by
the FLIR sensor, a and b are the calibration coefficients, and Ai,t = Z-j cj,t1ij,t + mi,t.
The technique for estimating expansion coefficients presented in Appendix B can be
expanded to include the additional calibration terms. This now creates a nonlinear re-
lationship among the parameters to be investigated, so a new solution must be derived.
The analysis follows the previous derivation for the logposterior for pixels on target in
terms of the expansion coefficients given in Appendix B, except here we include the
calibration coefficients a and b as well. This new logposterior may be written as

H(a, a, bID) = - E - Z A 2 -Ed(k))
2  't5)

t i kEli,t o t j 2- yj,t
-At -2Ai,td(k) +-d 2(k) -z 2

t _ _ _ _ _ _ __2 t j yj., t

- z z ~ - 2A~ ZkER,., d(k) + ZkER,.t d2(k) 2

t i t j ,

(7)

-it~ --2Aj,tDj,t + D,t z
Z' 2c C' ,,t (8)t i 2at j 2-yj,t

Incorporating Ai,t = aAi,t + b where Ai,t = Zj cej,tcbij,t + mi,t, we must take the deriva-
tives of H(a, a, bID) with respect to each aj,t, a, and b. To make the following deriva-
tions cleaner, we begin by mentioning following derivatives:

49A0 t a 19Ai,t, a a~ij,t if t =t'(9aaj,t 9aj,t 0 if t t'

aait= Ait(10)
o9a

1= 1. (11)
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We continue with the derivation by computing the derivatives of H(a, a, bID) with
respect to each aj,t:

2Nj,t'Aj,t, a Ait - 2 '9 Aj,t' Dj~t8HTEITs~' (12)

- - ~ a(Z k,t4 Pik,t + mi,t) + b] A%~,t - a1%t~~ __ ,t_________[a______________________ (13)
(aN1 ,t >1 k ak,t4 Dik,t + aNj,tmj,t + Ni,tb) a4)jj,t - a4Djj,tDj,t __Ckj't (14)

- - S 'Yj, t

Ej a2 .,D~tNtik akk~t4T-k,t + Ej 'Di,t (a2 Ni,tmi,t + abN1,t - aD1,t) __aj,t

(15)

a ~~ 0 ~ NIkt~, + a E 'ij,t (Ni,tmi,t + N~ Di~t) aj,t

k a. i

(16)

To maximize the logposterior, we must satisfy these Jt necessary conditions:

T2 E k,t 5Ni,P$ik,t4 'ij, t + -2 CijtN,tit + bNit -'t -il = 0, Vj, t
k a a a I Yj,t

(17)
+ I, bN Djt' .2ý = _,

ak,t Ni,týi~k,tZDij,t - Dij 't atit - a + L~jt-0 j
k i i

(18)

Fortunately these are T sets of linear equations, one set for each target, conveniently
expressed in matrix form:

ilit I a11t ) ) ,t

+ diag

Ei N1,t4)i,~1'tDj, &N >,'t ý a 2y ~ cjt

L Z~t D(i±±LbNi~t N, m,t ) (19)

If we keep the cr3 ,t terms constant, we can find the derivatives of H(a, a, bID) with
respect to a and b and maximize the logposterior with respect to these terms. The
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derivative of H(a, a, bID) with respect to a is

OH 2- A 8 A 2D7Aj~~t~

-a = . 2,t2o.2- a (20)
t i

=- Ný,tAi'tAi,t - A (21)
t i 0-2

t i

-N,,t (aA,t + b) Ai,t - A(,tD3,tIIr 2 (22)
t i

SX"K"aN- tA2t + bNi~tAi't - Ai,tDi,t
L 'Z (23)

t i

a b 1
-- 2 N3-3 N, - -tA--t + -• >3 Ai,tDit (24)

t i t i t i

and the derivative of H(a, a, bID) with respect to b is

OH = 2Nj,tAj,tNAi,t - 2 5Ai,tDi,t)>3> 2r2  (5
t i

Nitit- Di,t
-a2 (26)

t i

Ni,t (aAi,t + b) - (27)

(2

2
t i

S-" -aNg,tA.,t + bNi,t - D,t28)

t ia b

2 > Ni,tAi,t + ->3>3 Ni,t - -923 Di,t. (29)
t i t i t i

Two maximize this part of the posterior, the derivatives must satisfy these respective

conditions:

a>3>3 N,,tA? + b >3 Ni,tA1 ,t = >3 >3 , (30)
t i t i t i

a E E N2,,iA,t + b>> E Ni,t = E> > D2,t. (31)
t i t i t i

It is immediately apparent that these conditions can be represented in a form of a

matrix to solve for a and b. Also note that these set of equations represent the least

squares solution to the problem of determining the affine parameters a and b that best

fit the derived thermal intensities Ai,t from the data intensities d(k).

We now have two sets of equations: one set that maximizes the logposterior H

with respect to the a terms when the a and b terms are held constant and another set

that maximizes the same logposterior with respect to the a and b terms when the a

terms are held constant. Written together, these sets of equations represent a system

of nonlinear equations. Many techniques exist to find solutions to such a system, but
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these techniques can be difficult to implement for various reasons. Since this system

separates so nicely into two systems of linear equations, it is reasonable to suppose that

there may be a way to view the problem in terms of iteratively solving these linear

equations. If we can determine a "good" initial value, we may consider the algorithm

shown in Table 2 as a guide to iteratively estimate the expansion terms and calibration
coefficients.

Table 2: Algorithm to compute the expansion coefficients aj and thermal calibration coeffi-

cients a and b.

Initialization
Compute Ni,t and Di,t V i, t

Assign a . - 0 V j, t

Assign a 1
Assign b(') 0

Iteration
Repeat

(1) Assign a(n-1) + a(-)

(2) Assign b(n-1) <- b()
(n-1) +-- a (,- ) V j,t

(3) Assign -j,t V j,3 t

(4) Solve for the aj coefficients using a(n-1) and b(n- 1) V j, t

(5) Compute Ai,t - ,_ ,,+ m1 t V i, t

(6) Solve for a(n) and b(n) using \i,t, Ni,t, and Di,t V i, t

Until lI[e,a,b](n) - [a,a,bI(n-1)I < C

2.2 ATR with 3-D Data

The exploitation of 3-D has garnered tremendous attention by DARPA and the Air

Force. Different algorithms have been proposed by some of the usual suspects, such

as MITRE, Alphatech, and Carnegie Mellon. These algorithms have generally in-

volved extraction of features to achieve real-time performance constraints demanded

by DARPA's short-term goals. Our interest in the problem runs deeper. Instead of

developing yet another real-time algorithm to compete in a shootout with the myriad

real-time algorithms that have already been proposed, we are addressing the more fun-

damental question: what is the best that we could do with data of a particular quality,

independent of whatever particular algorithm is used? As in our infrared work, we by-

pass the feature extraction stage and conduct inference directly from the full available

data, since information may be lost in the feature extraction stage. If a feature-based

algorithm manages to achieve our theoretical lower bounds, that implies the features

chosen constitute sufficient statistics for the inference problem.
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We have developed statistical likelihood models for different kinds of 3-D data. For
raw laser radar imagery, we employ models based on the underlying physics of the
detector. For assembled "point clouds," whose statistics are a complex interaction
of the underlying sensor characteristics and the algorithms used to assemble multiple
views, we consider a Poisson point process model chosen for its analytical tractability.
Our prime emphasis in this work has been on the creation of performance bounds, as
described in Sections 2.3.2 and 2.3.3.

The improved "pixel-based" diffusions we developed for infrared data, described
Section 2.1.1, are also applicable to jump-diffusion algorithms for target recognition
with laser radar data. 4

2.3 Performance Bounds via Kullback-Leibler Distances,
Chernoff Distances, and Fisher Information

We have developed generic performance bounds, based on Stein's lemma, Chernoff
bounds, and Fisher information, which aim to be independent of any particular ATR
algorithm. Much of this work follows the lines of theory developed by Anuj Srivastava,
Ulf Grenander, and Michael Miller.

2.3.1 Performance Bounds with Low Frequency Radar Data

Inspired by the AFOSR DURIP project titled "Integrated Sensing and Computa-
tion for Passive Covert Radar, Signals Intelligence, and Other Applications Driven by
Moore's Law," we have demonstrated the power of our information-theoretic perfor-
mance bounds on the specific application of ATR with passive radar data by comparing
our predicted performance measures with empirical performance metrics derived from
Monte Carlo runs. Appendix D discusses computing such Chernoff bounds based on
a Rician model appropriate for low-frequency radar. Such bounds allow us to answer
questions such as "how long must we collect data on an aircraft before we can make
an recognition decision with a certain probability of correct decision?"

As described in detail in the next section, the Kullback-Leibler distance provides
another metric for detection problems. Appendix E presents an approximation of
the Kullback-Leibler distance for Rician models, and Appendix I applies this line of
reasoning to low-frequency radar.

2.3.2 Performance Bounds with 3-D Point Cloud Data

At the 2005 AFOSR program review in Raleigh, NC, we presented results on perfor-
mance analysis using Fisher Information and Kullback-Leibler distances for 3-D data
using our Poisson "point cloud" model. Our goal here is to formulate likelihood models
on point-cloud data, and not features extracted from those point clouds.

This work was inspired by reading the description of DARPA's E3D program, which
sought "efficient techniques for rapidly exploiting 3-D sensor data to precisely locate

4A. D. Lanterman, "Jump-diffusion Algorithm for Multiple Target Recognition using Laser Radar Range
Data," Optical Engineering, Vol. 40, No. 8, pp. 1724-1728, 2001.
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and recognize targets." The BAA for it contained various demands for different stages

of the program, such as "The Target Acquisition and Recognition technology areas will

develop techniques to locate and recognize articulating, reconfigurable targets under
partial obscuration conditions, with an identification probability of 0.85, a target re-

jection rate less than 5%, and a processing time of 3 minutes per target or less." This
naturally leads to some questions: 1) If such a milestone is not reached, is that the

fault of the algorithm or the sensor? 2) What performance from a particular sensor is
necessary to achieve a certain level of ATR performance, independent of the question

of what algorithm is used?
Theoretical lower bounds on algorithm performance give algorithm designers a goal

to shoot for, and provider criteria for various sensor hardware tradeoffs. In a similar
vein, ATR algorithms are typically designed under current computational hardware

constraints; however, computers keep getting faster, so it makes sense to ask what
ultimate underlying limits are placed by the sensor hardware. The goal is to understand

the information content available in the data itself, instead of skipping straight to

algorithm development.
Grenander's Pattern Theory provides our philosophical framework. Most 3-D data

ATR algorithms (and ATR algorithms with other kinds of data) seek features that are

invariant to pose (position and orientation). In contrast, the Grenander approach does
not hide from the pose parameter, and explicitly co-estimates it or integrates it out.

At a given viewing angle, Target A at one orientation may look much like Target B
at a different orientation. As Grenander, Miller, and Srivastava note, 5 "the nuisance

parameter of orientation estimation plays a fundamental role in determining the bound
on recognition."

A "true" statistical model, which exactly matches the complex interactions of the

sensors and Jigsaw-like software, is probably analytically intractable (if it could be

developed at all). We base our models on inhomogeneous Poisson processes, since they
possess many convenient properties. Although the real data will be distributed more

uniformly than a Poisson distribution will predict, the Poisson-based likelihoods should

provide useful results. Since modern 3-D point clouds will result from the assembly of

multiple views, solely modeling range measurement error across a single line of sight is

be insufficient. We assume that the points are seen with an additive Gaussian error of

appropriate covariance. This corresponds to a "translated Poisson process," where we

essentially assume that the intensity of the observed Poisson process is given by visible

portion of the shell of the model convolved with a "point spread function" defined by

the measurement covariance.
The experiments described in this section employed four target models, shown in

Figure 8, taken from the AFRL 3D Challenge Problem, which was distributed on

DVDs at the 2003 SPIE Defense & Security Symposium. The performance graphs

in the remaining subsections plot various metrics vs. the standard deviation of the

measurement errors. A circularly symmetric error density is assumed.

The DVDs for the 2003 Challenge Problem only have five different look angles per

5U. Grenander, M.I. Miller, and A. Srivastava, "Hilbert-Schmidt Lower Bounds for Estimators on Matrix
Lie Groups for ATR," IEEE Trans. Pattern Analysis and Machine Intelligence, Vol. 20, No. 2, Aug. 1998,
pp. 790-802.
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Figure 8: Four targets from the AFRL 2003 3D Challenge Problem, used in our 3-D point-

cloud performance model experiments.

target. Hence, we computed bounds for one particular look angle, using adjacent look
angles to compute derivatives with respect to orientation. The computed information
metrics will, in general, be a function of the orientation, since targets will look different
to the sensor at different orientations (in particular, some parts of the target may be

obscured if no views are available from a certain range of angles.) The limitations of
this Challenge Problem data set was one of the motivating factors of the development
of our new simulator described in Appendix A.

Cram6r-Rao bounds for point-cloud data: Cramir-Rao bounds for continuous
pose parameters are given by the diagonal elements of the inverse of the Fisher infor-
mation matrix. Cross-terms show how estimate errors are correlated. Figures 9, 10,
and 11 illustrate Cram6r-Rao bounds on the pose parameters of x-position, y-position,
and orientation angle, respectively, for the Sturmgeschultz and Semovente targets. We
assume that the target is sitting on a flat surface, and hence the z-position is known.
For each target type, two lines are given. One line corresponds to performance in an
artificial case where the all of the parameters are known except the target of interest.
The other shows performance in the case where all three parameters need to be co-

estimated. The distance between the lines shows the "performance hit" that results
from the coupling of the parameters.

We emphasize that even if a rather accurate model is available, we would not expect

a real system to achieve the bound in practice, since there will always be effects in the

real data not present in the model. In addition, in this particular case of 3-D point cloud

data, our inhomogenous Poisson model was formulated for computational convenience,

not fidelity to reality. We hope, however, that the bounds can provide insight into
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Figure 9: Cram~r-Rao bounds on the x-position pose parameter of a Sturmgeschulz and

Semovente as a function of measurement error.

overall performance trends. In practice, it may be feasible to vary the overall intensity

of the Poisson process to bring the bounds into accordance with results from Monte

Carlo runs.
I-divergence metrics for point-cloud data: Likelihood ratios are the key statis-

tics in hypothesis testing problems such as automatic target recognition. The Kullback-

Leibler distance, also known as the relative entropy, is the expected value of the likeli-

hood ratio, assuming the data is generated according to the "alternative hypothesis" (in

the "alternative" vs. "null" nomenclature). According to Stein's lemma, the Kullback-

Leibler distance drives the asymptotic performance of the detection problem. For

Gaussian data, the Kullback-Leibler distance reduces to a squared-error metric. For

Poisson data, as assumed in our point-cloud data model, the Kullback-Leibler distance
reduces to Csiszir's I-divergence.

When computing the I-divergence to compare targets, we adjust the pose of the

"alternate" target to get closest match to the "true" target as seen by the sensor system.

The work of Grenander, Srivastava, and Miller 6 shows that although hypothesis testing

with nuisance parameters (in this case) will be dominated by this I-divergence term,

there will also be a second term involving the Cram~r-Rao bound on the nuisance

parameters. This notion links estimation and recognition performance, and connects

the experiments described this subsection with the those described in the previous

subsection. Here, we only consider the effect of the "first term," i.e. the I-divergence.

We hope to study the inclusion of the second term in future work.

Figures 12, 13, 14, and 15 plot the I-divergence metrics (lower I-divergence indicates

greater difficulty of discrimination) between the targets. Each of the four plots takes a

6U. Grenander, A. Srivastava, and M.I. Miller, "Asymptotic Performance Analysis of Bayesian Target

Recognition," IEEE Trans. Information Theory, Vol. 46, No. 4, July 2000, pp. 1658-1665.
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Figure 10: Cram~r-Rao bounds on the y-position pose parameter of a Sturmgeschulz and

Semovente as a function of measurement error.

single target type to be the "alternative" hypothesis; each line within a plot represents
a different "null" hypothesis.

Interestingly, the I-divergence is not symmetric in general; for instance, the I(M4811panzer)

line in Figure 15 is different than the I(panzerllM48) line in Figure 12. This is why we

were sure to make a distinction between the "alternative" and "null" hypothesis in the

preceeding paragraphs. During the question & answer discussion period after Aaron

Lanterman's closing talk at the ARO/ARMDEC Workshop on Information-Theoretic
Image Processing, Prof. Al Hero of the Univ. of Michigan commented that we should

not shy away from this asymmetry or find it unusual; instead, we should "embrace the

asymmetry."
Such asymmetry manifests itself in the "pop-out" experiments in psychology.7 Con-

sider setting a probability of a Type-1 error (usually called "false alarm") in a Neyman-

Pearson detection framework. Consider two hypothetical problems, illustrated in Fig-

ure 16. In the problem on the left, we want to detect a Panzer in a sea of M48 clutter;

in the problem on the right, we want to detect an M48 in a sea of Panzer clutter. It

may be counterintuitive, but one problem will be more difficult than the other. Both

I-divergence curves for these two target types are shown in Figure 17. Note that the

problem illustrated on the left of Figure 16 is easier than that on the right for mea-

surement noise with standard deviation greater than 0.35 meters, whereas the problem

illustrated on the right of 16 is easier than that on the left for measurement noise with

standard deviation less than 0.35 meters.
7A.L. Yuille and J.M. Coughlan, "Fundamental Limits of Bayesian Inference: Order Parameters and

Phase Transitions for Road Tracking," IEEE Trans. on Pattern Analysis and Machine Intelligence, Vol. 2,
No. 2, Feb. 2000, pp. 160-173; Y.N. Wu, S.C. Zhu, and Z. Liu, "Equivalence of Julesz Ensembles and FRAME
Models," Intl J. of Computer Vision, Vol. 38, No. 3, 2000, pp. 247-265; see Section 7 in particular.
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Figure 11: Cram~r-Rao bounds on the angle pose parameter of a Sturmgeschulz and Se-

movente as a function of measurement error.

The cases of Panzer vs. Semovente (Figure 18), and Panzer vs. Sturmgeschultz
(Figure 19) have similar crossover points in the 0.3 to 0.4 meter region. The M48
vs. Semovente (Figure 20) and M48 vs. Strumgeschultz cases have lower crossover
points, at around 0.2 and 0.1 meters, respectively.

The Semovente vs. Sturmgeschultz case (Figure 22) is particularly interesting, since
the two curves lie almost on top of one another; essentially, at any resolution, finding
a Semovente in a sea of cluttering Sturmgeschulzen is no more or less difficult than
finding a Strumgeschulz in a sea of cluttering Semoventes.

2.3.3 Performance Bounds with Single-Image Laser Radar Data

If we are not trying to use point-cloud data, as in the previous subsection, and are
instead single views from a laser radar, more accurate likelihood models may be em-
ployed. Appendix C presents results on the computation of Cram6r-Rao bounds on
pose parameters using such models.

2.4 Finite-Set Statistics for Multitarget Tracking

Inspired by Keith Kastella's work with Joint Multitarget Densities for AFRL, we inte-
grated another research effort (previously supported by startup funds from the School
of Electrical Engineering, and primarily supported by funds from the Paris Professor-
ship) on data fusion in multitarget tracking using Ronald Mahler's Finite-Set Statistics,

particularly his Probability Hypothesis Densities (PHDs), into this PTATR effort.
Via simulations, we have illustrated the promise of PHD-based multitarget, mul-

tisensor tracking using an FM-radio-based passive radar scenario designed to match

a system being developed by NATO NC3A. Appendix G addresses some issues that
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Figure 12: I-divergences between the Panzer model (taken to be the "alternative" hypothesis)

and the Semovente, Sturmgeschulz, and Panzer models (taken to be the "null" hypothesis).

have vexed the PHD community, particularly the extraction of peaks (which represent

targets) from the PHD, and Appendix H studies the effect of multipath on the algo-
rithm. Our eventual goal is to apply such algorithms to data collected using equipment

purchased under the AFOSR DURIP project titled "Integrated Sensing and Compu-

tation for Passive Covert Radar, Signals Intelligence, and Other Applications Driven
by Moore's Law."

Although our particular example of data fusion and tracking using PHDs happens

to be passive radar, the theory is quite general and may be applied to data fusion with

other kinds of sensors.

3 Personnel Supported

Jason Dixon, graduate student, fully supported by the AFOSR PTATR grant

from August 15, 2004 to August 31, 2006 ( 41,344.70); support to continue the

work past August 2006 provided by the Demetrius T. Paris Professorship. Pri-

mary developer of ATR theory and algorithms for target recognition with FLIR

and LADAR data, as well as associated applied performance analysis techniques

Lisa Ehrman, graduate student, partially supported by the AFOSR PTATR grant

from January 1, 2004 to April 30, 2004 ( 4,791.08) to focus on performance esti-

mation via Kullback-Leibler distances and Chernoff information measures, with

particular application to ATR with low frequency radar. Primarily supported by

NATO Consultation, Command and Control Agency (NC3A).
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Jonathan Morris, graduate student, fully supported 
by the AFOSR PTATR grantfrom August 15, 2003 to May 15, 2004 ( 9,042.16). Began effort to port legacySilicon Graphics code to the OpenGL platform.Martin Tobias, graduate student, partially supported by the AFOSR PTATR

grant from September 1, 2004 ( 19,913.23); primarily supported by the startup-
funds from the School of Electrical and Computer Engineering and the Demetrius
T. Paris Junior Professorship. Also supported by NATO Consultation, Command
and Control Agency (NC3A) during a summer internship in 2005. Focused on
data fusion via finite-set statistics (similar in spirit to the Keith Kastella's JointMultitarget Probabilities) for target tracking with passive radar data.4 Technical 

PublicationsSome of the publications 
described 

below will be available from the PTATR (Pattern-Theoretic Automatic Target Recognition) website at users. ece . gatech. edu/~lanterma/ptatr.
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A select subset, particularly preprints of submitted or to-be-submitted journal papers,

which are referred to in other sections of this document, are provided as appendices

to this report. Note that later versions of the papers that may appear on the PTATR

website or in print may differ than the early drafts here.

4.1 Doctoral Dissertations

Georgia Tech dissertations may be easily obtained from the Electronic Thesis and

Dissertation Collection at etd. gatech. edu.

J.H. Dixon, Pattern-Theoretic Automatic Target Recognition for Infrared and

Laser Radar Data, expected to be completed Summer 2007.

L.M. Ehrman, An Algorithm for Automatic Target Recognition Using Passive

Radar and an EKF for Estimating Aircraft Orientation, Fall 2005.

M. Tobias, Probability Hypothesis Densities for Multitarget, Multisensor Tracking

with Application to Passive Radar, Spring 2006.

4.2 Journal Publications

L.M. Ehrman and A.D. Lanterman, "Chernoff-Based Prediction of ATR Perfor-

mance from Rician Radar Data, with Application to Passive Radar," Optical

Engineering, letter of acceptance subject to minor revision received Feb. 2, 2006;

revision submitted Feb. 2007. (Appendix D).
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L.M. Ehrman and A.D. Lanterman, "A Laplace Approximation of the Kullback-

Leibler Distance Between Ricean Distributions," IEEE Trans. on Information

Theory, to be submitted. (Appendix E).

A.D. Lanterman, "Continuous-Time Jump Processes, with Application to Shapes

on the Lattice," Statistics and Computing, letter requesting major revision re-

ceived Sept. 2005; manuscript undergoing revision. (Appendix F)

M. Tobias and A.D. Lanterman, "Probability Hypothesis Density-Based Multitar-

get Tracking with Bistatic Range and Doppler Observations," IEE Proc. Radar,

Sonar, and Navigation, Vol. 152, No. 3, June 2005, pp. 195-205. (Available from

ieeexplore. ieee. org, paper number 01459156.)

M. Tobias and A.D. Lanterman, "Techniques for Birth Particle Placement in the

PHD Particle Filter, Applied to Passive Radar," IEE Proc. Radar, Sonar, and

Navigation, submitted April 7, 2007. (Appendix G).

M. Tobias and A.D. Lanterman, "Multipath Effects and the PHD Particle Filter,"

IEE Proc. Radar, Sonar, and Navigation, to be submitted. (Appendix H).

4.3 Conference Publication

L.M. Ehrman and A.D. Lanterman, "Robust Algorithm for Automated Target

Recognition using Precomputed Radar Cross Sections, Automatic Target Recog-

nition XIV, Proc. SPIE 5426, Ed: F.A. Sadjadi, April 12-16, 2004, pp. 197-208.

(Appendix I).
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Figure 16: Illustration of two asymmetric "pop out experiments." On the left, we want

to detect Panzer among cluttering M48s; on the right, we want to detect an M48 among
cluttering Panzers.

A.D. Lanterman, "Passive Radar Imaging and Target Recognition using Illumina-
tors of Opportunity," NATO Symposium on Target Identification and Recognition
Using RF Systems, Oslo, Norway, Oct. 11-13, 2004.

L.M. Ehrman and A.D. Lanterman, "Assessing the Performance of a Covert
Automatic Target Recognition Algorithm," Automatic Target Recognition XV,
Proc. SPIE 5807, Ed: F.A. Sadjadi, Orlando, FL, March 28-April 1, 2005, pp. 77-
87.

J.H. Dixon and A.D. Lanterman, "Toward Practical Pattern-Theoretic ATR Algo-
rithms for Infrared Imagery," Automatic Target Recognition XVI, SPIE Vol. 6234,
Ed: F.A. Sadjadi, April 2006, pp. 212-220. (Appendix B).

J.H. Dixon and A.D. Lanterman, "Information-Theoretic Bounds on Target Recog-
nition Performance from Laser Radar Data," Automatic Target Recognition XVI,
SPIE Vol. 6234, Ed: F.A. Sadjadi, April 2006, pp. 394-403. (Appendix C).

5 Interactions/Transitions

5.1 Conference and Workshops

J.H. Dixon, "Toward Practical Pattern-Theoretic ATR Algorithms for Infrared
Imagery" and "Information-Theoretic Bounds on Target Recognition Performance
from Laser Radar Data" (papers listed above under "Conference Publications"),
SPIE Defense and Security Symposium, Orlando, FL, April 17-21, 2006 ( 1,184.04).
A.D. Lanterman also attended (1,003.47).

A.D. Lanterman, "Passive Radar Imaging and Target Recognition using Illumina-
tors of Opportunity," NATO Symposium on Target Identification and Recognition
Using RF Systems, Oslo, Norway, Oct. 11-13, 2004 (trip paid for by NATO).

A.D. Lanterman, "General Pattern Theory," AFRL ATR Theory MURI Work-
shop, Dayton, OH, Dec. 1, 2004 ( 582.67).
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Figure 17: I-divergences between Panzer and M48 models.

A.D. Lanterman, "A Mathematical Theory of Automatic Target Recognition,"
Workshop on Quantum Algorithms for Signal, Image, and Data Processing, UCSD,
La Jolla, CA, Dec. 7-9, 2004. Invited talk (trip paid for by UCSD).

A.D. Lanterman (with L.M. Ehrman), "Assessing the Performance of a Covert
Automatic Target Recognition Algorithm," SPIE Defense and Security Sympo-
sium, Orlando, FL, March 28-April 1, 2005. (See paper reference above).

A.D. Lanterman (with J.H. Dixon and L. Fomundam), "Information-Theoretic
Bounds on ATR Performance from Laser Radar Data," AFOSR 2005 Program
Review for Sensing, Imaging and Object Recognition, NCSU, Raleigh, NC, May
25-27 ( 681.71). J.H. Dixon also attended ( 240.00)

A.D. Lanterman, "General Pattern Theory Applied to ATR," ARO/AMRDEC
Workshop on Information- Theoretic Image Processing, Redstone Arsenal, Huntsville,
AL, June 14-15, 2005. Invited talk (trip paid for by Army organizations).

A.D. Lanterman, "A Passive Radar Testbed at Georgia Tech," 4th Multinational
Passive Covert Radar Conference, Syracuse Univ. Hotel and Conference Center,
Syracuse, NY, Oct. 5-7, 2005 ( 797.21).

M. Tobias (with A.D. Lanterman), "Using the Probability Hypothesis Density
for Multitarget Tracking with Passive Radar," 4th Multinational Passive Covert
Radar Conference, Syracuse Univ. Hotel and Conference Center, Syracuse, NY,
Oct. 5-7, 2005 ( 653.16).

5.2 Transition: LADAR Simulator

Greg Arnold of AFRL/SNAT became interested in our use of OpenGL in our custom-
made laser radar and infrared simulation tools. Some of their previous efforts to cre-
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Figure 18: I-divergences between Panzer and Semovente models.

ate synthetic datasets for use by the ATR community involved POV-Ray and IRMA,
each of which present various difficulties. We provided him with a documented copy
of our simulation code, which he provided to Jeremy Olson and Kyle Erickson of
AFRL/SNAA, who performed a detailed review and provided an extensive set of com-
ments, which Jason Dixon used to prepare an updated version of the simulator. We
went through several such review/update iterations.

The simulator was originally created to create scenes based on a "heterodyning"
laser radars, such as those studied by Jeff Shapiro of MIT. Such radars have a char-
acteristic ambiguity in range manifest in the banded structure of the background. We
revised the code, particularly the noise generation code, to allow modeling of the "direct
detection" radars studied by T.J. Klausutis of AFRL/MNGI and his colleagues.

Our resulting "LADAR Simulator" code, its associated user's manual, and cross-
linked help pages for a small Application Programming Interface (API) that will let
users develop their own MATLAB scripts using the simulator's scene generating capa-
bilities is currently available via the web at users. ece. gatech. edu/\j dixon/ladar\_sim.
The user's manual is also attached to this report as Appendix A.

In an e-mail dated April 30, 2007, Greg Arnold informed us that his group completed
a new Challenge Problem description and data set created using our LADAR Simulator,
and that he was reviewing it and working on the "challenge experiments" to send for
evaluation for public release.

6 Patent Disclosures

None.
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Figure 19: I-divergences between Panzer and Sturmgeschultz models.

7 Honors

A.D. Lanterman, Richard M. Bass/Eta Kappa Nu ECE Oustanding Junior Teacher
Award (2006), as voted on by the senior class.

A.D. Lanterman, named the Demetrius T. Paris Junior Professor beginning in
September 2004. This special three-year Chair position was founded to support
the development of young faculty.

A.D. Lanterman, NIC Certificate of Excellence "for outstanding contributions
to the National Intelligence Council and exceptional service to the Intelligence
Community," April 2001.
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Figure 20: I-divergences between M48 and Semovente models.
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Figure 21: I-divergences between M48 and Sturmgeschultz models.

30



am

im

OMU &1 &19 U MZ 01 L U &A 0.
PM~fSMMWW4O"W )W

Figure 22: I-divergences between Semovente and Sturmgeschultz models.
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